REVERSED-PHASE THIN-LAYER CHROMATOGRAPHY AND PARTITION COEFFICIENTS OF PENICILLINS

A. EE BIRD AND A. C. MARSHALL
Phursícall and Amalytical Services Unit, Beecham Research Laboratories, Chemotherapeutic IResearch Cemitre, Binockfame Paxk, Betchtiorth, Surrey (Great Britain)
(Recrived June 25th, 1971)

SUMIMEMRE

$\boldsymbol{R}_{\mathbf{M}}$ values for eight penicillins have been measured by a reversed-phase thinlayer chromatography system using n-octanol as the stationary phase. There is a mear perfect linear relation between the R_{M} values measured at pH 3 or pH_{4} and the logarithm of the partition coefficients of the penicillin free acids between n-octanol and water.

The change of $\boldsymbol{R}_{\mathbf{M}}$ with change in pH of the developing buffer is close to a theoreticall vallue for measurements at pH_{3} and 4 , but it is too low for measurements at pH 4 and 5 -

Attention is drawn to an unusually low Hassch π value for the methyl group of phemethicillin.

INTRRODUCTTION

Several biological properties of penicillins have been shown ${ }^{1-3}$ to be quantitatively or qualitatively related to their partition coefficients. Biagr et al. ${ }^{1}$ have used $\boldsymbol{R}_{\mathbf{M}}$ values from a thin-layer chromatographic (TLC) system for correlation of antibiotic properties. Bird and Marshall ${ }^{2}$ used calculated Hansch π values ${ }^{4}$ and, to a lesser extent, measured partition coefficients, for correlation of the extent of serum bimding of many penicillins.

Biagi et al. ${ }^{\text {. }}$ have recently presented R_{M} results from their system developed with buffers of different pH and suggested that such studies might provide a model system for investigating penetration of penicillins through biological membranes. We show in this paper that Blagr's results are not in accord with theory and we presemt an alternative reversed-phase TLC system for penicillins and compare results from it with measured partition coefficients for the same set of compounds.

FITPERIMIENTAL

Thuint-lager cheromatograptry

Glass plates, $20 \times 20 \mathrm{~cm}$, were coated with a 0.5 mm layer of Camag microcrystalline cellulose (67.5 g to 330 ml water) using a motorised spreader. The plates were dried at room temperature overnight, heated in an oven at 110° for I .5 h , cooled

 equilibrated wiith the coctamoll ssolnution. The m-orathuroll wase pruiffiedl bxr successiixe:
 was allowed to ceraporatite from the pilattes com the lbemath flom Iss min after nemoxings them from the chamiber.

Partition cooefficients

 titration, while cequililibration cof ssmmplle lbethwerm thre pithasess orccums. The pantition

 as BRÄNDSTRÖM's ceqn. I® ffor lbases.

$$
\begin{equation*}
\mathbb{P}=\frac{\pi V V_{10} W_{2}}{\sqrt[S]{ } W_{11}\left(\left(W_{10}-W_{11}-W_{2}\right)\right)} \tag{id}
\end{equation*}
$$

where:

 mused:;
 working pp\#:;
 wolume is commected loy diedructiinon off thre mohnwme floumd in an blank experiiment, wwithout samuple;;
S is the woltume off m-actennoll math.
 of the volumerof acid nequined to axdijost the mellemamit molhume off watterr allome:tho, thatt \mathbf{p} HIL.

The comrected wohumes ame::

$$
V_{2}^{\prime}=V_{2}\left(1-\frac{10^{-\mathrm{pH}}}{m}\right)
$$

where W^{\prime} is the initial volume of the aqueous phase.
Trial experiments with the method indicated that accurate neutralisation of the initial sample solution was critical for obtaining reliable results and caused considerable difficulty. This step can be eliminated by including the ionisation constant $\left(\boldsymbol{K}_{\mathbf{a}}\right)$ of the sample acid in the equation, as follows. The expression for K_{a} after addition of $V_{1} \mathrm{ml} \mathrm{HCl}$ is

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left(V_{0}-V_{1}\right)}{V_{1}}
$$

Thus

$$
V_{\mathbf{1}}=\frac{V_{0}}{1+\frac{K_{\mathrm{a}}}{\left[\mathrm{H}^{+}\right]}}=\frac{V_{0}}{\alpha}
$$

Substituting for V_{1} in eqn. I gives

$$
\begin{equation*}
P=\frac{W V_{2} \alpha}{S\left[V_{0}\left(\frac{\alpha-1}{\alpha}\right)-V_{2}\right]} \tag{2}
\end{equation*}
$$

Eqn. 2 can be used in two ways. If K_{a} is known P can be calculated direct. If K_{a} is not known then both K_{a} and P can be determined by a graphical method using measurements at two or more pH values. Several values of P are calculated from the measurements at any one pH , using various trial values of K_{a}. A plot of P against K_{a} gives a curve the shape of which varies with the pH at which the measurements were made. The point of intersection of these curves gives the P and $\boldsymbol{K}_{\mathrm{a}}$ values for the sample. Measurements are needed at only two pH values provided these are chosen so that the lines intersect approximately at right angles. The partition coefficients for penicillins reported here were determined using eqn. 4, either graphically or by direct calculation with a $\mathrm{p} K_{\mathrm{a}}$ of 2.72 .

RESULTS AND DISCUSSION

The mean $\log P$ values and R_{M} values for measurements at pH 's 3,4 and 5 are given in Table I. The TLC system gave clearly defined round spots with no tailing. Regression analysis by the method of least squares gives the following equations:

$$
\begin{array}{lll}
\mathrm{pH}_{3} & R_{M}=\mathrm{r} .035 \log P-\mathrm{I} .892 & 0.997 \\
\text { pH 4 } & R_{M}=\mathrm{I} .036 \log P-2.628 & 0.998 \\
\text { pH 5 } & R_{M}=0.86 \mathrm{r} \log P-2.719 & 0.973 \tag{5}
\end{array}
$$

where r is the correlation coefficient.

TAUBR2至E II

at IP' wass dettemminedl using eqn. 2: and the graphical method with measurements at pH's 3 anrdl 4 , exsterypt fior comencillim and diciosacillin where measurements were at $p H 4$ only and a pha
 tho whinichth itt wass apppified. This is: in good agreement with literature values from potentiometric

 iundl wee suiberequantlly neulised that: most literature values of P are calculated with w/v concenthuattionsi.
w IEacth IR'3y iss ther meam of between 5 ; and 10 spots on 3 to 5 plates. Each plate had at least auce sypott off earch prenvicillinin.
 croxulide mott Tbee olbtraincedt.
 tthautt im anm iideail syrstiem the: slope: of these correlation lines would be exactly r.ooo.
 TWVe lhanre: mos explamation of the slight deviation of the slope from one. Possibly it is medlantecd tro) thee diffflenemitt concentirations: of salts in the aqueous phases used for the $\mathbb{R}_{\mathbb{N u}}$ aundl $\mathbb{P P}^{\prime}$ mmeassumenmentts; or two some interaction of the penicillins with the cellulose und thre IILC systerm. The resultiss att pH 5 show considerably more scatter than those

 cause of the considerably lower slope at $\mathbb{P H H} 5$. HHownever,, somme off thlue scattterr iss mott
 phenoxymethylpenicillin. This is contrary to what is expecthedl, Bercarnse immturoxtluctivom of a methyl group should increase thydrophobicic clluarracther," ammed iitt is the oppprosiitte off

 value of ΔR_{M} can be calculated as follows. FFor am acird off iromisattionn comstaumt $\mathbb{K}_{\text {ian }}$,

$$
\begin{equation*}
R_{M}=R_{M}^{\prime}-\log \left(1+\frac{K_{\mathrm{n}}}{\left[\mathrm{H}^{+}\right]}\right) \tag{6}
\end{equation*}
$$

where \boldsymbol{R}_{M} is the value observed on a reversed-plhase thaim-liagner chmmonmattoyemranm dre-
 dent value of R_{M} for the unionised form of the aciid.

Eqn. 6 is derived in the same way as an amallogions equattion fior lbaysess giincem by Büchi and Fresenㅋ, assuming that the iomised auciid is imsolnulble im three orrgramice phase.
ΔR_{M} values can be calculated from equ. 16 as follows:

$$
\begin{equation*}
\left.\Delta R_{M}=\left(R_{M} \text { at } \mathrm{pH}_{1}\right)-\left(R_{M} \text { at } \mathrm{pH}_{2}\right)=-\log \left(\mathbb{I}+\frac{\not K_{\mathrm{a}}}{\left.\| \mathbb{H}^{+}\right]_{\mathrm{u}}}\right)\right)+\operatorname{logg}\left(\left(\mathbb{I}+\frac{\boldsymbol{K}_{\mathrm{a}}}{\left[\mathrm{HH}^{+}\right]_{2}}\right)\right) \tag{7}
\end{equation*}
$$

To a first approximation the ionisation comstamits coff alll peaniciallims muitthoxutt amm ionising group in the side-chain are the same, so $\Delta \mathbb{R}_{M M}$ shooulud lbe a coomstramtt fror meral-

 are too low. There are two obvious possible explamathioms off threse diliscrnepramecies. Either the effective pH of the TLC system is mot thoe same ass thlue lbundll pher wff thue dheveloping buffer or the assumption in the derivattiom off equn. (6) is mott wallichl. WWe dron moit have enough evidence to choose between these possilbilliitives.
 partitions into the octanol phase. Thene unay lbe some solnutiom off iromiiserdl premiccilllium in the octanol as an ion pair, either wiith thee lbufffer ccattiom cor mivitllm al mneetaill ceattirom.

 a greater relative effect at higher pHI wallues wolluene thme comaemiturattionm off preminicillliim in the octanol is lower. Thus this effect woulld prolbaiblly lbe in uthne commect adiunectiinom tho)
 the pH increases.

the TLC system during development. Throughout our work we have checked some developed plates for the presence of pH variations by spraying with universal indicator or with other indicators chosen to show a pH change in the region of interest. With the cellulose-aminohexoic acid system the indicators gave a very uniform colour over the entire plate, apart from a very small zone near the solvent front. This was the main reason for our choice of the aminohexoic acid buffer system. When n-octanolcoated cellulose plates were developed with citrate or phosphate buffers, definite pH gradients were observed. Nevertheless, this check does not provide absolute confirmation that the pH during development is exactly that of the developing buffer. Consequently an effect of the thin layer on the buffer pH cannot be eliminated as a possible cause of the ΔR_{M} discrepancies. This effect would not need to be very large, at least for the pH 3 and 4 measurements where an actual pH difference of 0.9 unit would give a calculated ΔR_{M} of 0.73 , in agreement with the observed value.

Biagi et al.5, ${ }^{5}$ give R_{M} values for ten penicillins on a silicone oil-coated Silica Gel G layer developed with a sodium acetate-veronal buffer at $\mathrm{pH} 2.6,7.4$, and 9.4 . The mean ΔR_{M} values are 0.22 for $\mathrm{pH} 2.6-7.4$ and 0.31 for $\mathrm{pH} 2.6-9.4$. The corresponding theoretical values from eqn. 7 are 4.43 and 6.43 respectively. Thus this system exhibits behaviour which is very far from ideal. This is very probably due to the use of Silica Gel as the solid support. Büchi and Fresen ${ }^{7}$ state that sodium ions can interchange with hydrogen ions on silica gel plates and they recommended cellulose as a more inert support. The very low ΔR_{M} values found by Biagi et al. suggest that the effective pH during development has not changed anywhere near so much as the bulk pH of the buffer; i.c. the silica gel exerts a buffering effect on the system. By spraying with indicators we have observed pH gradients, or fronts where the pH changes, on silica gel plates coated with n-octanol or silicone oil and developed in various buffers at various pH values. These results, and the low ΔR_{M} values of JIAGI et al., indicate that silica gel is not a suitable support for TLC studies where development at a known pH is important.

A desirable feature of a TLC system for measurement of R_{M} values for use in structure-activity correlations is that it should be capable of covering a wide range of hydrophobic character in the samples. This can be achieved in the system presented here by development at various pH values to give convenient R_{F} values. Results for the set of compounds under investigation can then be made comparable by calculating the R_{M} values appropriate to a single pH by the use of measured ΔR_{M} values. However, this TLC system does not give meaningful results from the very lipophobic penicillins, ampicillin and carbenicillin (α-amino- and α-carboxy-benzylpenicillins, respectively). These compounds ran very close to the solvent front at all pH values studied. This is a realistic result because the presence of an ionised group in the sidechain makes it very unlikely that any significant amount of these penicillins would partition in to the octanol phase. Biagi et al.5,0 obtained measurable R_{M} values from these two penicillins. We feel that there must be some doubt as to whether this indicates a genuine partition in to the organic phase in view of our results and the presence of an ionised group in the side-chain.

The π values which can be deduced from the measurements reported here require some comment. The Hansch substituent constant π is defined ${ }^{4}$ as $\log P_{x}-$ $\log P_{H}$, where P_{x} and P_{H} are the partition coefficients between n-octanol and water of the substituted and parent compounds, respectively.

 stramdlamd flor coompanisiom lbeccaunse brotth thee niituro anndl 3 -isonsazolyly groups are electron wiittlydranwimug.

IRTEIETREMCIES

 New Diontk, inn ppress.

